Log in

Science

CAC biology students create DNA Christmas trees

Posted 11/30/23

A class of biology students at Central Arizona College has modeled two Christmas trees from the two strands of DNA in a chromosome.

Over a three-week period, students conducted meetings to …

You must be a member to read this story.

Join our family of readers for as little as $5 per month and support local, unbiased journalism.


Already have an account? Log in to continue.

Current print subscribers can create a free account by clicking here

Otherwise, follow the link below to join.

To Our Valued Readers –

Visitors to our website will be limited to five stories per month unless they opt to subscribe. The five stories do not include our exclusive content written by our journalists.

For $6.99, less than 20 cents a day, digital subscribers will receive unlimited access to YourValley.net, including exclusive content from our newsroom and access to our Daily Independent e-edition.

Our commitment to balanced, fair reporting and local coverage provides insight and perspective not found anywhere else.

Your financial commitment will help to preserve the kind of honest journalism produced by our reporters and editors. We trust you agree that independent journalism is an essential component of our democracy. Please click here to subscribe.

Sincerely,
Charlene Bisson, Publisher, Independent Newsmedia

Please log in to continue

Log in
I am anchor
Science

CAC biology students create DNA Christmas trees

Posted

A class of biology students at Central Arizona College has modeled two Christmas trees from the two strands of DNA in a chromosome.

Over a three-week period, students conducted meetings to determine the necessary materials, gathered items such as cardboard boxes, Styrofoam, wire, and more to complete the DNA Christmas tree.

Throughout the construction process, students studied DNA, discovering that the two strands of DNA in a chromosome run antiparallel. They also gained insights into the structure of nucleotides and the complementary sequence binding of nucleotide, resulting in a double helix, according to a CAC press release.

The students are enrolled in the BIO181 course taught by professor Sunjung Park.

“The students successfully crafted a flawless B-form DNA structure, complete with major and minor grooves, featuring 10 to 11 nucleotides in one complete turn — a visually stunning representation of the anti-parallel structure,” Park stated in the release.

DNA structure symbolizes homologous chromosomes, where one chromosome from the mother and one from the father pair up during fertilization. Humans possess 23 sets of homologous chromosomes in each cell, with identical genes in corresponding positions. The combination of genes from the mother's and father's chromosomes determines an individual's appearance. The human body comprises approximately 37 trillion cells, the release stated.

“The inception of this project dates back to November 2019, when the first paternal chromosome was crafted by a group of students enrolled in the BIO181 general biology class,” Park stated in the release. “In an effort to enhance their understanding of DNA structure, I proposed an additional activity: creating a DNA Christmas tree.

Park provided the basic information about the tree's size and the structure of nucleotides and then let the students have at it.

“This fall, four years after the creation of the paternal chromosome, current BIO181 students undertook the construction of the maternal chromosome, thereby completing the set of homologous chromosomes,” Park stated. “Witnessing the students engage in discussions about DNA structure, educate one another and exchange ideas during the collaborative construction was a source of great pride.”

CAC states that the project is believed to be the first DNA sculpture representing homologous chromosomes in the form of a Christmas tree.